Spatiotemporal dissection of the cell cycle with single-cell proteogenomics.

Mahdessian D, Cesnik AJ, Gnann C, Danielsson F, Stenström L, Arif M, Zhang C, Le T, Johansson F, Shutten R, Bäckström A, Axelsson U, Thul P, Cho NH, Carja O, Uhlén M, Mardinoglu A, Stadler C, Lindskog C, Ayoglu B, Leonetti MD, Pontén F, Sullivan DP, Lundberg E

Nature 590 (7847) 649-654 [2021-02-00; online 2021-02-24]

The cell cycle, over which cells grow and divide, is a fundamental process of life. Its dysregulation has devastating consequences, including cancer1-3. The cell cycle is driven by precise regulation of proteins in time and space, which creates variability between individual proliferating cells. To our knowledge, no systematic investigations of such cell-to-cell proteomic variability exist. Here we present a comprehensive, spatiotemporal map of human proteomic heterogeneity by integrating proteomics at subcellular resolution with single-cell transcriptomics and precise temporal measurements of individual cells in the cell cycle. We show that around one-fifth of the human proteome displays cell-to-cell variability, identify hundreds of proteins with previously unknown associations with mitosis and the cell cycle, and provide evidence that several of these proteins have oncogenic functions. Our results show that cell cycle progression explains less than half of all cell-to-cell variability, and that most cycling proteins are regulated post-translationally, rather than by transcriptomic cycling. These proteins are disproportionately phosphorylated by kinases that regulate cell fate, whereas non-cycling proteins that vary between cells are more likely to be modified by kinases that regulate metabolism. This spatially resolved proteomic map of the cell cycle is integrated into the Human Protein Atlas and will serve as a resource for accelerating molecular studies of the human cell cycle and cell proliferation.

Eukaryotic Single Cell Genomics (ESCG) [Service]

NGI Stockholm (Genomics Applications)

NGI Stockholm (Genomics Production)

National Genomics Infrastructure

Spatial Proteomics [Collaborative]

PubMed 33627808

DOI 10.1038/s41586-021-03232-9

Crossref 10.1038/s41586-021-03232-9

pii: 10.1038/s41586-021-03232-9


Publications 9.5.0