Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals.

Winkler TW, Rasheed H, Teumer A, Gorski M, Rowan BX, Stanzick KJ, Thomas LF, Tin A, Hoppmann A, Chu AY, Tayo B, Thio CHL, Cusi D, Chai JF, Sieber KB, Horn K, Li M, Scholz M, Cocca M, Wuttke M, van der Most PJ, Yang Q, Ghasemi S, Nutile T, Li Y, Pontali G, Günther F, Dehghan A, Correa A, Parsa A, Feresin A, de Vries APJ, Zonderman AB, Smith AV, Oldehinkel AJ, De Grandi A, Rosenkranz AR, Franke A, Teren A, Metspalu A, Hicks AA, Morris AP, Tönjes A, Morgan A, Podgornaia AI, Peters A, Körner A, Mahajan A, Campbell A, Freedman BI, Spedicati B, Ponte B, Schöttker B, Brumpton B, Banas B, Krämer BK, Jung B, Åsvold BO, Smith BH, Ning B, Penninx BWJH, Vanderwerff BR, Psaty BM, Kammerer CM, Langefeld CD, Hayward C, Spracklen CN, Robinson-Cohen C, Hartman CA, Lindgren CM, Wang C, Sabanayagam C, Heng CK, Lanzani C, Khor CC, Cheng CY, Fuchsberger C, Gieger C, Shaffer CM, Schulz CA, Willer CJ, Chasman DI, Gudbjartsson DF, Ruggiero D, Toniolo D, Czamara D, Porteous DJ, Waterworth DM, Mascalzoni D, Mook-Kanamori DO, Reilly DF, Daw EW, Hofer E, Boerwinkle E, Salvi E, Bottinger EP, Tai ES, Catamo E, Rizzi F, Guo F, Rivadeneira F, Guilianini F, Sveinbjornsson G, Ehret G, Waeber G, Biino G, Girotto G, Pistis G, Nadkarni GN, Delgado GE, Montgomery GW, Snieder H, Campbell H, White HD, Gao H, Stringham HM, Schmidt H, Li H, Brenner H, Holm H, Kirsten H, Kramer H, Rudan I, Nolte IM, Tzoulaki I, Olafsson I, Martins J, Cook JP, Wilson JF, Halbritter J, Felix JF, Divers J, Kooner JS, Lee JJ, O'Connell J, Rotter JI, Liu J, Xu J, Thiery J, Ärnlöv J, Kuusisto J, Jakobsdottir J, Tremblay J, Chambers JC, Whitfield JB, Gaziano JM, Marten J, Coresh J, Jonas JB, Mychaleckyj JC, Christensen K, Eckardt KU, Mohlke KL, Endlich K, Dittrich K, Ryan KA, Rice KM, Taylor KD, Ho K, Nikus K, Matsuda K, Strauch K, Miliku K, Hveem K, Lind L, Wallentin L, Yerges-Armstrong LM, Raffield LM, Phillips LS, Launer LJ, Lyytikäinen LP, Lange LA, Citterio L, Klaric L, Ikram MA, Ising M, Kleber ME, Francescatto M, Concas MP, Ciullo M, Piratsu M, Orho-Melander M, Laakso M, Loeffler M, Perola M, de Borst MH, Gögele M, Bianca M, Lukas MA, Feitosa MF, Biggs ML, Wojczynski MK, Kavousi M, Kanai M, Akiyama M, Yasuda M, Nauck M, Waldenberger M, Chee ML, Chee ML, Boehnke M, Preuss MH, Stumvoll M, Province MA, Evans MK, O'Donoghue ML, Kubo M, Kähönen M, Kastarinen M, Nalls MA, Kuokkanen M, Ghanbari M, Bochud M, Josyula NS, Martin NG, Tan NYQ, Palmer ND, Pirastu N, Schupf N, Verweij N, Hutri-Kähönen N, Mononen N, Bansal N, Devuyst O, Melander O, Raitakari OT, Polasek O, Manunta P, Gasparini P, Mishra PP, Sulem P, Magnusson PKE, Elliott P, Ridker PM, Hamet P, Svensson PO, Joshi PK, Kovacs P, Pramstaller PP, Rossing P, Vollenweider P, van der Harst P, Dorajoo R, Sim RZH, Burkhardt R, Tao R, Noordam R, Mägi R, Schmidt R, de Mutsert R, Rueedi R, van Dam RM, Carroll RJ, Gansevoort RT, Loos RJF, Felicita SC, Sedaghat S, Padmanabhan S, Freitag-Wolf S, Pendergrass SA, Graham SE, Gordon SD, Hwang SJ, Kerr SM, Vaccargiu S, Patil SB, Hallan S, Bakker SJL, Lim SC, Lucae S, Vogelezang S, Bergmann S, Corre T, Ahluwalia TS, Lehtimäki T, Boutin TS, Meitinger T, Wong TY, Bergler T, Rabelink TJ, Esko T, Haller T, Thorsteinsdottir U, Völker U, Foo VHX, Salomaa V, Vitart V, Giedraitis V, Gudnason V, Jaddoe VWV, Huang W, Zhang W, Wei WB, Kiess W, März W, Koenig W, Lieb W, Gao X, Sim X, Wang YX, Friedlander Y, Tham YC, Kamatani Y, Okada Y, Milaneschi Y, Yu Z, Lifelines cohort study , DiscovEHR/MyCode study , VA Million Veteran Program , Stark KJ, Stefansson K, Böger CA, Hung AM, Kronenberg F, Köttgen A, Pattaro C, Heid IM

Commun Biol 5 (1) 580 [2022-06-13; online 2022-06-13]

Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.

NGI SNP genotyping [Service]

NGI Uppsala (SNP&SEQ Technology Platform) [Service]

National Genomics Infrastructure [Service]

PubMed 35697829

DOI 10.1038/s42003-022-03448-z

Crossref 10.1038/s42003-022-03448-z

pii: 10.1038/s42003-022-03448-z
pmc: PMC9192715


Publications 7.2.9