Rendo V, Stoimenov I, Mateus A, Sjöberg E, Svensson R, Gustavsson AL, Johansson L, Ng A, OʼBrien C, Giannakis M, Artursson P, Nygren P, Cheong I, Sjöblom T
Nat Commun 11 (1) 1308 [2020-03-11; online 2020-03-11]
Cancer chemotherapy targeting frequent loss of heterozygosity events is an attractive concept, since tumor cells may lack enzymatic activities present in normal constitutional cells. To find exploitable targets, we map prevalent genetic polymorphisms to protein structures and identify 45 nsSNVs (non-synonymous small nucleotide variations) near the catalytic sites of 17 enzymes frequently lost in cancer. For proof of concept, we select the gastrointestinal drug metabolic enzyme NAT2 at 8p22, which is frequently lost in colorectal cancers and has a common variant with 10-fold reduced activity. Small molecule screening results in a cytotoxic kinase inhibitor that impairs growth of cells with slow NAT2 and decreases the growth of tumors with slow NAT2 by half as compared to those with wild-type NAT2. Most of the patient-derived CRC cells expressing slow NAT2 also show sensitivity to 6-(4-aminophenyl)-N-(3,4,5-trimethoxyphenyl)pyrazin-2-amine (APA) treatment. These findings indicate that the therapeutic index of anti-cancer drugs can be altered by bystander mutations affecting drug metabolic genes.
Bioinformatics Support for Computational Resources [Service]
Chemical Biology Consortium Sweden (CBCS) [Collaborative]
Drug Discovery and Development (DDD) [Service]
PubMed 32161261
DOI 10.1038/s41467-020-15111-4
Crossref 10.1038/s41467-020-15111-4
pii: 10.1038/s41467-020-15111-4
pmc: PMC7066191