Li X, Padhan N, Sjöström EO, Roche FP, Testini C, Honkura N, Sáinz-Jaspeado M, Gordon E, Bentley K, Philippides A, Tolmachev V, Dejana E, Stan RV, Vestweber D, Ballmer-Hofer K, Betsholtz C, Pietras K, Jansson L, Claesson-Welsh L
Nat Commun 7 (-) 11017 [2016-03-23; online 2016-03-23]
The specific role of VEGFA-induced permeability and vascular leakage in physiology and pathology has remained unclear. Here we show that VEGFA-induced vascular leakage depends on signalling initiated via the VEGFR2 phosphosite Y949, regulating dynamic c-Src and VE-cadherin phosphorylation. Abolished Y949 signalling in the mouse mutant Vegfr2(Y949F/Y949F) leads to VEGFA-resistant endothelial adherens junctions and a block in molecular extravasation. Vessels in Vegfr2(Y949F/Y949F) mice remain sensitive to inflammatory cytokines, and vascular morphology, blood pressure and flow parameters are normal. Tumour-bearing Vegfr2(Y949F/Y949F) mice display reduced vascular leakage and oedema, improved response to chemotherapy and, importantly, reduced metastatic spread. The inflammatory infiltration in the tumour micro-environment is unaffected. Blocking VEGFA-induced disassembly of endothelial junctions, thereby suppressing tumour oedema and metastatic spread, may be preferable to full vascular suppression in the treatment of certain cancer forms.
Bioinformatics Support and Infrastructure [Service]
Bioinformatics Support for Computational Resources [Service]
Bioinformatics Support, Infrastructure and Training [Service]
NGI Uppsala (Uppsala Genome Center) [Service]
National Genomics Infrastructure [Service]
PubMed 27005951
DOI 10.1038/ncomms11017
Crossref 10.1038/ncomms11017
pii: ncomms11017
pmc: PMC4814575