Sex-limited experimental evolution drives transcriptomic divergence in a hermaphrodite.

Cīrulis A, Nordén AK, Churcher AM, Ramm SA, Zadesenets KS, Abbott JK

Genome Biol Evol 16 (1) - [2024-01-05; online 2023-12-29]

The evolution of gonochorism from hermaphroditism is linked with the formation of sex chromosomes, as well as the evolution of sex-biased and sex-specific gene expression to allow both sexes to reach their fitness optimum. There is evidence that sexual selection drives the evolution of male-biased gene expression in particular. However, previous research in this area in animals comes from either theoretical models or comparative studies of already old sex chromosomes. We therefore investigated changes in gene expression under 3 different selection regimes for the simultaneous hermaphrodite Macrostomum lignano subjected to sex-limited experimental evolution (i.e. selection for fitness via eggs, sperm, or a control regime allowing both). After 21 and 22 generations of selection for male-specific or female-specific fitness, we characterized changes in whole-organism gene expression. We found that female-selected lines had changed the most in their gene expression. Although annotation for this species is limited, gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses suggest that metabolic changes (e.g. biosynthesis of amino acids and carbon metabolism) are an important adaptive component. As predicted, we found that the expression of genes previously identified as testis-biased candidates tended to be downregulated in the female-selected lines. We did not find any significant expression differences for previously identified candidates of other sex-specific organs, but this may simply reflect that few transcripts have been characterized in this way. In conclusion, our experiment suggests that changes in testis-biased gene expression are important in the early evolution of sex chromosomes and gonochorism.

Bioinformatics Long-term Support WABI [Collaborative]

Bioinformatics Support for Computational Resources [Service]

Bioinformatics Support, Infrastructure and Training [Collaborative]

NGI Short read [Service]

NGI Uppsala (SNP&SEQ Technology Platform) [Service]

National Genomics Infrastructure [Service]

PubMed 38155579

DOI 10.1093/gbe/evad235

Crossref 10.1093/gbe/evad235

pmc: PMC10786194
pii: 7503504


Publications 9.5.1