Identification and rescue of a tRNA wobble inosine deficiency causing intellectual disability disorder

Ramos J, Proven M, Halvardson J, Hagelskamp F, Kuchinskaya E, Phelan B, Bell R, Kellner S, Feuk L, Thuresson AC, Fu D

RNA 26 (11) rna.076380.120 [2020-08-06; online 2020-08-06]

The deamination of adenosine to inosine at the wobble position of tRNA is an essential post-transcriptional RNA modification required for wobble decoding in bacteria and eukaryotes. In humans, the wobble inosine modification is catalyzed by the heterodimeric ADAT2/3 complex. Here, we describe novel pathogenic ADAT3 variants impairing adenosine deaminase activity through a distinct mechanism that can be corrected through expression of the heterodimeric ADAT2 subunit. The variants were identified in a family in which all three siblings exhibit intellectual disability linked to biallelic variants in the ADAT3 locus. The biallelic ADAT3 variants result in a missense variant converting alanine to valine at a conserved residue or the introduction of a premature stop codon in the deaminase domain. Fibroblast cells derived from two ID-affected individuals exhibit a reduction in tRNA wobble inosine levels and severely diminished adenosine tRNA deaminase activity. Notably, the ADAT3 variants exhibit impaired interaction with the ADAT2 subunit and alterations in ADAT2-dependent nuclear localization. Based upon these findings, we find that tRNA adenosine deaminase activity and wobble inosine modification can be rescued in patient cells by overexpression of the ADAT2 catalytic subunit. These results uncover a key role for the inactive ADAT3 deaminase domain in proper assembly with ADAT2 and demonstrate that ADAT2/3 nuclear import is required for maintaining proper levels of the wobble inosine modification in tRNA.

Bioinformatics Compute and Storage [Service]

Clinical Genomics Uppsala [Collaborative]

NGI Uppsala (SNP&SEQ Technology Platform) [Service]

NGI Uppsala (Uppsala Genome Center) [Service]

National Genomics Infrastructure [Service]

QC bibliography QC xrefs

PubMed 32763916

DOI 10.1261/rna.076380.120

Crossref 10.1261/rna.076380.120