Spheroid Segmentation Using Multiscale Deep Adversarial Networks

Sadanandan SK, Karlsson J, Wahlby C

The IEEE International Conference on Computer Vision (ICCV), 2017 - (-) 36-41 [2017-10-00; online 2017-10-00]

In this work, we segment spheroids with different sizes, shapes, and illumination conditions from bright-field microscopy images. To segment the spheroids we create a novel multiscale deep adversarial network with different deep feature extraction layers at different scales. We show that linearly increasing the adversarial loss contribution results in a stable segmentation algorithm for our dataset. We qualitatively and quantitatively compare the performance of our deep adversarial network with two other networks without adversarial losses. We show that our deep adversarial network performs better than the other two networks at segmenting the spheroids from our 2D bright-field microscopy images.

BioImage Informatics [Collaborative]

DOI 10.1109/iccvw.2017.11

Crossref 10.1109/iccvw.2017.11


Publications 9.5.0