Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories.

't Hoen PA, Friedländer MR, Almlöf J, Sammeth M, Pulyakhina I, Anvar SY, Laros JF, Buermans HP, Karlberg O, Brännvall M, GEUVADIS Consortium , den Dunnen JT, van Ommen GJ, Gut IG, Guigó R, Estivill X, Syvänen AC, Dermitzakis ET, Lappalainen T

Nat. Biotechnol. 31 (11) 1015-1022 [2013-11-00; online 2013-09-17]

RNA sequencing is an increasingly popular technology for genome-wide analysis of transcript sequence and abundance. However, understanding of the sources of technical and interlaboratory variation is still limited. To address this, the GEUVADIS consortium sequenced mRNAs and small RNAs of lymphoblastoid cell lines of 465 individuals in seven sequencing centers, with a large number of replicates. The variation between laboratories appeared to be considerably smaller than the already limited biological variation. Laboratory effects were mainly seen in differences in insert size and GC content and could be adequately corrected for. In small-RNA sequencing, the microRNA (miRNA) content differed widely between samples owing to competitive sequencing of rRNA fragments. This did not affect relative quantification of miRNAs. We conclude that distributing RNA sequencing among different laboratories is feasible, given proper standardization and randomization procedures. We provide a set of quality measures and guidelines for assessing technical biases in RNA-seq data.

NGI Uppsala (SNP&SEQ Technology Platform)

National Genomics Infrastructure

PubMed 24037425

DOI 10.1038/nbt.2702

Crossref 10.1038/nbt.2702

pii: nbt.2702


Publications 9.5.0