Naboulsi R, Larsson M, Andersson L, Younis S
Sci Rep 11 (1) 19484 [2021-09-30; online 2021-09-30]
The expression of Igf2 in mammals shows a complex regulation involving multiple promoters and epigenetic mechanisms. We previously identified a novel regulatory mechanism based on the interaction between the transcriptional factor ZBED6 and Igf2 intron. Disruption of the ZBED6-Igf2 interaction leads to a dramatic up-regulation of IGF2 expression postnatally. In the current study we characterize an additional layer of regulation involving miR483 encoded by another Igf2 intron. We found a highly significant up-regulation of miR483 expression when the ZBED6-Igf2 axis is disrupted in transgenic mice. Furthermore, CRISPR/Cas9 mediated knock-out of miR483 in C2C12 myoblast cells, both wild-type and cells with disrupted ZBED6-Igf2 axis (Igf2dGGCT), resulted in down-regulation of Igf2 expression and a reduced proliferation rate. This was further validated using miR483 mimics and inhibitors. RNA-seq analysis revealed a significant enrichment of genes involved in the PI3K-Akt signaling pathway among genes down-regulated in miR483-/- cells, including Igf2 down-regulation. The opposite pattern was observed in Igf2dGGCT cells, where Igf2 is up-regulated. Our data suggest a positive feedback between miR483 and Igf2 promoter activity, strongly affecting how ZBED6 controls Igf2 expression in various cell types.
NGI Uppsala (SNP&SEQ Technology Platform) [Service]
National Genomics Infrastructure [Service]
PubMed 34593874
DOI 10.1038/s41598-021-98777-0
Crossref 10.1038/s41598-021-98777-0
pii: 10.1038/s41598-021-98777-0
pmc: PMC8484269