Kinetic investigation of human 5-lipoxygenase with arachidonic acid.

Mittal M, Kumar RB, Balagunaseelan N, Hamberg M, Jegerschöld C, Rådmark O, Haeggström JZ, Rinaldo-Matthis A

Bioorg. Med. Chem. Lett. 26 (15) 3547-3551 [2016-08-01; online 2016-06-11]

Human 5-lipoxygenase (5-LOX) is responsible for the formation of leukotriene (LT)A4, a pivotal intermediate in the biosynthesis of the leukotrienes, a family of proinflammatory lipid mediators. 5-LOX has thus gained attention as a potential drug target. However, details of the kinetic mechanism of 5-LOX are still obscure. In this Letter, we investigated the kinetic isotope effect (KIE) of 5-LOX with its physiological substrate, arachidonic acid (AA). The observed KIE is 20±4 on kcat and 17±2 on kcat/KM at 25°C indicating a non-classical reaction mechanism. The observed rates show slight temperature dependence at ambient temperatures ranging from 4 to 35°C. Also, we observed low Arrhenius prefactor ratio (AH/AD=0.21) and a small change in activation energy (Ea(D)-Ea(H)=3.6J/mol) which suggests that 5-LOX catalysis involves tunneling as a mechanism of H-transfer. The measured KIE for 5-LOX involves a change in regioselectivity in response to deuteration at position C7, resulting in H-abstraction form C10 and formation of 8-HETE. The viscosity experiments influence the (H)kcat, but not (D)kcat. However the overall kcat/KM is not affected for labeled or unlabeled AA, suggesting that either the product release or conformational rearrangement might be involved in dictating kinetics of 5-LOX at saturating conditions. Investigation of available crystal structures suggests the role of active site residues (F421, Q363 and L368) in regulating the donor-acceptor distances, thus affecting H-transfer as well as regiospecificity. In summary, our study shows that that the H-abstraction is the rate limiting step for 5-LOX and that the observed KIE of 5-LOX is masked by a change in regioselectivity.

Protein Science Facility (PSF) [Service]

QC bibliography QC xrefs

PubMed 27363940

DOI 10.1016/j.bmcl.2016.06.025

Crossref 10.1016/j.bmcl.2016.06.025

S0960-894X(16)30636-9