Using trials of caloric restriction and bariatric surgery to explore the effects of body mass index on the circulating proteome.

Goudswaard LJ, Smith ML, Hughes DA, Taylor R, Lean M, Sattar N, Welsh P, McConnachie A, Blazeby JM, Rogers CA, Suhre K, Zaghlool SB, Hers I, Timpson NJ, Corbin LJ

Sci Rep 13 (1) 21077 [2023-11-29; online 2023-11-29]

Thousands of proteins circulate in the bloodstream; identifying those which associate with weight and intervention-induced weight loss may help explain mechanisms of diseases associated with adiposity. We aimed to identify consistent protein signatures of weight loss across independent studies capturing changes in body mass index (BMI). We analysed proteomic data from studies implementing caloric restriction (Diabetes Remission Clinical trial) and bariatric surgery (By-Band-Sleeve), using SomaLogic and Olink Explore1536 technologies, respectively. Linear mixed models were used to estimate the effect of the interventions on circulating proteins. Twenty-three proteins were altered in a consistent direction after both bariatric surgery and caloric restriction, suggesting that these proteins are modulated by weight change, independent of intervention type. We also integrated Mendelian randomisation (MR) estimates of the effect of BMI on proteins measured by SomaLogic from a UK blood donor cohort as a third line of causal evidence. These MR estimates provided further corroborative evidence for a role of BMI in regulating the levels of six proteins including alcohol dehydrogenase-4, nogo receptor and interleukin-1 receptor antagonist protein. These results indicate the importance of triangulation in interrogating causal relationships; further study into the role of proteins modulated by weight in disease is now warranted.

Affinity Proteomics Uppsala [Service]

NGI Proteomics [Service]

NGI Uppsala (SNP&SEQ Technology Platform) [Service]

National Genomics Infrastructure [Service]

PubMed 38030643

DOI 10.1038/s41598-023-47030-x

Crossref 10.1038/s41598-023-47030-x

pmc: PMC10686974
pii: 10.1038/s41598-023-47030-x


Publications 9.5.1