An integrated transcriptome analysis in T-cell acute lymphoblastic leukemia links DNA methylation subgroups to dysregulated TAL1 and ANTP homeobox gene expression.

Haider Z, Larsson P, Landfors M, Köhn L, Schmiegelow K, Flaegstad T, Kanerva J, Heyman M, Hultdin M, Degerman S

Cancer Med 8 (1) 311-324 [2019-01-00; online 2018-12-21]

Classification of pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients into CIMP (CpG Island Methylator Phenotype) subgroups has the potential to improve current risk stratification. To investigate the biology behind these CIMP subgroups, diagnostic samples from Nordic pediatric T-ALL patients were characterized by genome-wide methylation arrays, followed by targeted exome sequencing, telomere length measurement, and RNA sequencing. The CIMP subgroups did not correlate significantly with variations in epigenetic regulators. However, the CIMP+ subgroup, associated with better prognosis, showed indicators of longer replicative history, including shorter telomere length (P = 0.015) and older epigenetic (P < 0.001) and mitotic age (P < 0.001). Moreover, the CIMP+ subgroup had significantly higher expression of ANTP homeobox oncogenes, namely TLX3, HOXA9, HOXA10, and NKX2-1, and novel genes in T-ALL biology including PLCB4, PLXND1, and MYO18B. The CIMP- subgroup, with worse prognosis, was associated with higher expression of TAL1 along with frequent STIL-TAL1 fusions (2/40 in CIMP+ vs 11/24 in CIMP-), as well as stronger expression of BEX1. Altogether, our findings suggest different routes for leukemogenic transformation in the T-ALL CIMP subgroups, indicated by different replicative histories and distinct methylomic and transcriptomic profiles. These novel findings can lead to new therapeutic strategies.

Clinical Genomics Umeå [Collaborative]

PubMed 30575306

DOI 10.1002/cam4.1917

Crossref 10.1002/cam4.1917

pmc: PMC6346238


Publications 9.5.0