Identification of a discrete subpopulation of spinal cord ependymal cells with neural stem cell properties.

Stenudd M, Sabelström H, Llorens-Bobadilla E, Zamboni M, Blom H, Brismar H, Zhang S, Basak O, Clevers H, Göritz C, Barnabé-Heider F, Frisén J

Cell Rep 38 (9) 110440 [2022-03-01; online 2022-03-03]

Spinal cord ependymal cells display neural stem cell properties in vitro and generate scar-forming astrocytes and remyelinating oligodendrocytes after injury. We report that ependymal cells are functionally heterogeneous and identify a small subpopulation (8% of ependymal cells and 0.1% of all cells in a spinal cord segment), which we denote ependymal A (EpA) cells, that accounts for the in vitro stem cell potential in the adult spinal cord. After spinal cord injury, EpA cells undergo self-renewing cell division as they give rise to differentiated progeny. Single-cell transcriptome analysis revealed a loss of ependymal cell gene expression programs as EpA cells gained signaling entropy and dedifferentiated to a stem-cell-like transcriptional state after an injury. We conclude that EpA cells are highly differentiated cells that can revert to a stem cell state and constitute a therapeutic target for spinal cord repair.

Integrated Microscopy Technologies Stockholm [Collaborative]

NGI Short read [Service]

NGI Single cell [Service]

NGI Stockholm (Genomics Applications) [Service]

NGI Stockholm (Genomics Production) [Service]

National Genomics Infrastructure [Service]

PubMed 35235796

DOI 10.1016/j.celrep.2022.110440

Crossref 10.1016/j.celrep.2022.110440

pii: S2211-1247(22)00167-X


Publications 7.2.9