Improved breast cancer histological grading using deep learning.

Wang Y, Acs B, Robertson S, Liu B, Solorzano L, Wählby C, Hartman J, Rantalainen M

Ann. Oncol. 33 (1) 89-98 [2022-01-00; online 2021-09-29]

The Nottingham histological grade (NHG) is a well-established prognostic factor for breast cancer that is broadly used in clinical decision making. However, ∼50% of patients are classified as grade 2, an intermediate risk group with low clinical value. To improve risk stratification of NHG 2 breast cancer patients, we developed and validated a novel histological grade model (DeepGrade) based on digital whole-slide histopathology images (WSIs) and deep learning. In this observational retrospective study, routine WSIs stained with haematoxylin and eosin from 1567 patients were utilised for model optimisation and validation. Model generalisability was further evaluated in an external test set with 1262 patients. NHG 2 cases were stratified into two groups, DG2-high and DG2-low, and the prognostic value was assessed. The main outcome was recurrence-free survival. DeepGrade provides independent prognostic information for stratification of NHG 2 cases in the internal test set, where DG2-high showed an increased risk for recurrence (hazard ratio [HR] 2.94, 95% confidence interval [CI] 1.24-6.97, P = 0.015) compared with the DG2-low group after adjusting for established risk factors (independent test data). DG2-low also shared phenotypic similarities with NHG 1, and DG2-high with NHG 3, suggesting that the model identifies morphological patterns in NHG 2 that are associated with more aggressive tumours. The prognostic value of DeepGrade was further assessed in the external test set, confirming an increased risk for recurrence in DG2-high (HR 1.91, 95% CI 1.11-3.29, P = 0.019). The proposed model-based stratification of patients with NHG 2 tumours is prognostic and adds clinically relevant information over routine histological grading. The methodology offers a cost-effective alternative to molecular profiling to extract information relevant for clinical decisions.

BioImage Informatics [Collaborative]

Bioinformatics Support for Computational Resources [Service]

PubMed 34756513

DOI 10.1016/j.annonc.2021.09.007

Crossref 10.1016/j.annonc.2021.09.007

pii: S0923-7534(21)04486-0


Publications 9.5.0