The role of circulating galectin-1 in type 2 diabetes and chronic kidney disease: evidence from cross-sectional, longitudinal and Mendelian randomisation analyses.

Drake I, Fryk E, Strindberg L, Lundqvist A, Rosengren AH, Groop L, Ahlqvist E, Borén J, Orho-Melander M, Jansson PA

Diabetologia - (-) - [2021-11-07; online 2021-11-07]

Galectin-1 modulates inflammation and angiogenesis, and cross-sectional studies indicate that galectin-1 may be a uniting factor between obesity, type 2 diabetes and kidney function. We examined whether circulating galectin-1 can predict incidence of chronic kidney disease (CKD) and type 2 diabetes in a middle-aged population, and if Mendelian randomisation (MR) can provide evidence for causal direction of effects. Participants (n = 4022; 58.6% women) in the Malmö Diet and Cancer Study-Cardiovascular Cohort enrolled between 1991 and 1994 (mean age 57.6 years) were examined. eGFR was calculated at baseline and after a mean follow-up of 16.6 ± 1.5 years. Diabetes status was ascertained through registry linkage (mean follow-up of 18.4 ± 6.1 years). The associations of baseline galectin-1 with incident CKD and type 2 diabetes were assessed with Cox regression, adjusting for established risk factors. In addition, a genome-wide association study on galectin-1 was performed to identify genetic instruments for two-sample MR analyses utilising the genetic associations obtained from the Chronic Kidney Disease Genetics (CKDGen) Consortium (41,395 cases and 439,303 controls) and the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium (74,124 cases and 824,006 controls). One genome-wide significant locus in the galectin-1 gene region was identified (sentinel SNP rs7285699; p = 2.4 × 10-11). The association between galectin-1 and eGFR was also examined in individuals with newly diagnosed diabetes from the All New Diabetics In Scania (ANDIS) cohort. Galectin-1 was strongly associated with lower eGFR at baseline (p = 2.3 × 10-89) but not with incident CKD. However, galectin-1 was associated with increased risk of type 2 diabetes (per SD increase, HR 1.12; 95% CI 1.02, 1.24). Two-sample MR analyses could not ascertain a causal effect of galectin-1 on CKD (OR 0.92; 95% CI 0.82, 1.02) or type 2 diabetes (OR 1.05; 95% CI 0.98, 1.14) in a general population. However, in individuals with type 2 diabetes from ANDIS who belonged to the severe insulin-resistant diabetes subgroup and were at high risk of diabetic nephropathy, genetically elevated galectin-1 was significantly associated with higher eGFR (p = 5.7 × 10-3). Galectin-1 is strongly associated with lower kidney function in cross-sectional analyses, and two-sample MR analyses suggest a causal protective effect on kidney function among individuals with type 2 diabetes at high risk of diabetic nephropathy. Future studies are needed to explore the mechanisms by which galectin-1 affects kidney function and whether it could be a useful target among individuals with type 2 diabetes for renal improvement.

Affinity Proteomics Uppsala [Service]

PubMed 34743218

DOI 10.1007/s00125-021-05594-1

Crossref 10.1007/s00125-021-05594-1

pii: 10.1007/s00125-021-05594-1

Publications 7.1.2