Actionable cancer vulnerability due to translational arrest, p53 aggregation and ribosome biogenesis stress evoked by the disulfiram metabolite CuET.

Kanellis DC, Zisi A, Skrott Z, Lemmens B, Espinoza JA, Kosar M, Björkman A, Li X, Arampatzis S, Bartkova J, Andújar-Sánchez M, Fernandez-Capetillo O, Mistrik M, Lindström MS, Bartek J

Cell Death Differ. 30 (7) 1666-1678 [2023-07-00; online 2023-05-04]

Drug repurposing is a versatile strategy to improve current therapies. Disulfiram has long been used in the treatment of alcohol dependency and multiple clinical trials to evaluate its clinical value in oncology are ongoing. We have recently reported that the disulfiram metabolite diethyldithiocarbamate, when combined with copper (CuET), targets the NPL4 adapter of the p97VCP segregase to suppress the growth of a spectrum of cancer cell lines and xenograft models in vivo. CuET induces proteotoxic stress and genotoxic effects, however important issues concerning the full range of the CuET-evoked tumor cell phenotypes, their temporal order, and mechanistic basis have remained largely unexplored. Here, we have addressed these outstanding questions and show that in diverse human cancer cell models, CuET causes a very early translational arrest through the integrated stress response (ISR), later followed by features of nucleolar stress. Furthermore, we report that CuET entraps p53 in NPL4-rich aggregates leading to elevated p53 protein and its functional inhibition, consistent with the possibility of CuET-triggered cell death being p53-independent. Our transcriptomics profiling revealed activation of pro-survival adaptive pathways of ribosomal biogenesis (RiBi) and autophagy upon prolonged exposure to CuET, indicating potential feedback responses to CuET treatment. The latter concept was validated here by simultaneous pharmacological inhibition of RiBi and/or autophagy that further enhanced CuET's tumor cytotoxicity, using both cell culture and zebrafish in vivo preclinical models. Overall, these findings expand the mechanistic repertoire of CuET's anti-cancer activity, inform about the temporal order of responses and identify an unorthodox new mechanism of targeting p53. Our results are discussed in light of cancer-associated endogenous stresses as exploitable tumor vulnerabilities and may inspire future clinical applications of CuET in oncology, including combinatorial treatments and focus on potential advantages of using certain validated drug metabolites, rather than old, approved drugs with their, often complex, metabolic profiles.

NGI Short read [Service]

NGI Stockholm (Genomics Production) [Service]

National Genomics Infrastructure [Service]

PubMed 37142656

DOI 10.1038/s41418-023-01167-4

Crossref 10.1038/s41418-023-01167-4

pmc: PMC10307793
pii: 10.1038/s41418-023-01167-4


Publications 9.5.0