Visuttijai K, Hedberg-Oldfors C, Thomsen C, Glamuzina E, Kornblum C, Tasca G, Hernandez-Lain A, Sandstedt J, Dellgren G, Roach P, Oldfors A
J. Clin. Endocrinol. Metab. 105 (2) 557-566 [2020-02-01; online 2019-10-20]
Glycogenin is considered to be an essential primer for glycogen biosynthesis. Nevertheless, patients with glycogenin-1 deficiency due to biallelic GYG1 (NM_004130.3) mutations can store glycogen in muscle. Glycogenin-2 has been suggested as an alternative primer for glycogen synthesis in patients with glycogenin-1 deficiency. The objective of this article is to investigate the importance of glycogenin-1 and glycogenin-2 for glycogen synthesis in skeletal and cardiac muscle. Glycogenin-1 and glycogenin-2 expression was analyzed by Western blot, mass spectrometry, and immunohistochemistry in liver, heart, and skeletal muscle from controls and in skeletal and cardiac muscle from patients with glycogenin-1 deficiency. Glycogenin-1 and glycogenin-2 both were found to be expressed in the liver, but only glycogenin-1 was identified in heart and skeletal muscle from controls. In patients with truncating GYG1 mutations, neither glycogenin-1 nor glycogenin-2 was expressed in skeletal muscle. However, nonfunctional glycogenin-1 but not glycogenin-2 was identified in cardiac muscle from patients with cardiomyopathy due to GYG1 missense mutations. By immunohistochemistry, the mutated glycogenin-1 colocalized with the storage of glycogen and polyglucosan in cardiomyocytes. Glycogen can be synthesized in the absence of glycogenin, and glycogenin-1 deficiency is not compensated for by upregulation of functional glycogenin-2. Absence of glycogenin-1 leads to the focal accumulation of glycogen and polyglucosan in skeletal muscle fibers. Expression of mutated glycogenin-1 in the heart is deleterious, and it leads to storage of abnormal glycogen and cardiomyopathy.
Glycoproteomics and MS Proteomics [Service]
PubMed 31628455
DOI 10.1210/clinem/dgz075
Crossref 10.1210/clinem/dgz075
pii: 5599738
pmc: PMC7046021