Lokhande L, Nilsson D, de Matos Rodrigues J, Hassan M, Olsson LM, Pyl PT, Vasquez L, Porwit A, Gerdtsson AS, Jerkeman M, Ek S
Cancers (Basel) 16 (13) - [2024-06-21; online 2024-06-21]
With the aim to advance the understanding of immune regulation in MCL and to identify targetable T-cell subsets, we set out to combine image analysis and spatial omic technology focused on both early and late differentiation stages of T cells. MCL patient tissue (n = 102) was explored using image analysis and GeoMx spatial omics profiling of 69 proteins and 1812 mRNAs. Tumor cells, T helper (TH) cells and cytotoxic (TC) cells of early (CD57-) and late (CD57+) differentiation stage were analyzed. An image analysis workflow was developed based on fine-tuned Cellpose models for cell segmentation and classification. TC and CD57+ subsets of T cells were enriched in tumor-rich compared to tumor-sparse regions. Tumor-sparse regions had a higher expression of several key immune suppressive proteins, tentatively controlling T-cell expansion in regions close to the tumor. We revealed that T cells in late differentiation stages (CD57+) are enriched among MCL infiltrating T cells and are predictive of an increased expression of immune suppressive markers. CD47, IDO1 and CTLA-4 were identified as potential targets for patients with T-cell-rich MCL TIME, while GITR might be a feasible target for MCL patients with sparse T-cell infiltration. In subgroups of patients with a high degree of CD57+ TC-cell infiltration, several immune checkpoint inhibitors, including TIGIT, PD-L1 and LAG3 were increased, emphasizing the immune-suppressive features of this highly differentiated T-cell subset not previously described in MCL.
Bioinformatics Long-term Support WABI [Collaborative]
Bioinformatics Support, Infrastructure and Training [Collaborative]
PubMed 39001353
DOI 10.3390/cancers16132289
Crossref 10.3390/cancers16132289
pmc: PMC11240320
pii: cancers16132289