A molecular atlas of cell types and zonation in the brain vasculature.

Vanlandewijck M, He L, Mäe MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Laviña B, Gouveia L, Sun Y, Raschperger E, Räsänen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C

Nature 554 (7693) 475-480 [2018-02-22; online 2018-02-14]

Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited. Here, using vascular single-cell transcriptomics, we provide molecular definitions for the principal types of blood vascular and vessel-associated cells in the adult mouse brain. We uncover the transcriptional basis of the gradual phenotypic change (zonation) along the arteriovenous axis and reveal unexpected cell type differences: a seamless continuum for endothelial cells versus a punctuated continuum for mural cells. We also provide insight into pericyte organotypicity and define a population of perivascular fibroblast-like cells that are present on all vessel types except capillaries. Our work illustrates the power of single-cell transcriptomics to decode the higher organizational principles of a tissue and may provide the initial chapter in a molecular encyclopaedia of the mammalian vasculature.

Bioinformatics Compute and Storage [Service]

Eukaryotic Single Cell Genomics (ESCG) [Service]

NGI Stockholm (Genomics Applications) [Service]

NGI Stockholm (Genomics Production) [Service]

QC bibliography QC xrefs

PubMed 29443965

DOI 10.1038/nature25739

Crossref 10.1038/nature25739

nature25739

GEO GSE99058 [Single cell RNA-seq of mouse brain astrocyte transcriptomes]

GEO GSE98816 [Single cell RNA-seq of mouse brain vascular transcriptomes]

GEO GSE99235 [Single cell RNA-seq of mouse lung vascular transcriptomes]