Genomic surveillance and antimicrobial resistance in Neisseria gonorrhoeae isolates in Bangkok, Thailand in 2018.

Golparian D, Kittiyaowamarn R, Paopang P, Sangprasert P, Sirivongrangson P, Franceschi F, Jacobsson S, Wi T, Unemo M

J. Antimicrob. Chemother. 77 (8) 2171-2182 [2022-07-28; online 2022-05-12]

Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a substantial global public health problem. Gonococcal infections acquired in or from Asia represent most verified ceftriaxone treatment failures, and several ceftriaxone-resistant strains have emerged in Asia and subsequently spread globally. Additionally, in Thailand the gonorrhoea incidence remains high. Herein, we investigate the genomic diversity, AMR and AMR determinants in gonococcal isolates cultured in 2018 in Bangkok, Thailand. Gonococcal isolates from males (n = 37) and females (n = 62) were examined by Etest and WGS. AMR determinants and molecular epidemiological STs were characterized. For phylogenomic comparison, raw sequence data were included from China (432 isolates), Japan (n = 270), Vietnam (n = 229), Thailand (n = 3), a global dataset (n = 12 440) and the 2016 WHO reference strains plus WHO Q (n = 15). In total, 88, 66 and 41 different NG-MAST, NG-STAR and MLST STs, respectively, and 31 different NG-STAR clonal complexes were found. A remarkably high frequency (88%) of β-lactamase TEM genes was detected and two novel TEM alleles were found. The phylogenomic analysis divided the isolates into the previously described lineages A and B, with a large proportion of Thai isolates belonging to the novel sublineage A3. We describe the first molecular epidemiological study using WGS on gonococcal isolates from Thailand. The high prevalence of AMR and AMR determinants for ciprofloxacin, tetracycline and benzylpenicillin, and some strains belonging to clones/clades especially in sublineage A2 that are prone to develop resistance to extended-spectrum cephalosporins (ESCs) and azithromycin, should prompt continued and strengthened AMR surveillance, including WGS, of N. gonorrhoeae in Thailand.

Clinical Genomics Örebro [Collaborative]

PubMed 35542983

DOI 10.1093/jac/dkac158

Crossref 10.1093/jac/dkac158

pii: 6583486


Publications 9.5.1