Karlsson R, Thorsell A, Gomila M, Salvà-Serra F, Jakobsson HE, Gonzales-Siles L, Jaén-Luchoro D, Skovbjerg S, Fuchs J, Karlsson A, Boulund F, Johnning A, Kristiansson E, Moore ERB
Mol. Cell Proteomics 19 (3) 518-528 [2020-03-00; online 2020-01-15]
Mass spectrometry (MS) and proteomics offer comprehensive characterization and identification of microorganisms and discovery of protein biomarkers that are applicable for diagnostics of infectious diseases. The use of biomarkers for diagnostics is widely applied in the clinic and the use of peptide biomarkers is increasingly being investigated for applications in the clinical laboratory. Respiratory-tract infections are a predominant cause for medical treatment, although, clinical assessments and standard clinical laboratory protocols are time-consuming and often inadequate for reliable diagnoses. Novel methods, preferably applied directly to clinical samples, excluding cultivation steps, are needed to improve diagnostics of infectious diseases, provide adequate treatment and reduce the use of antibiotics and associated development of antibiotic resistance. This study applied nano-liquid chromatography (LC) coupled with tandem MS, with a bioinformatics pipeline and an in-house database of curated high-quality reference genome sequences to identify species-unique peptides as potential biomarkers for four bacterial pathogens commonly found in respiratory tract infections (RTIs): Staphylococcus aureus; Moraxella catarrhalis; Haemophilus influenzae and Streptococcus pneumoniae The species-unique peptides were initially identified in pure cultures of bacterial reference strains, reflecting the genomic variation in the four species and, furthermore, in clinical respiratory tract samples, without prior cultivation, elucidating proteins expressed in clinical conditions of infection. For each of the four bacterial pathogens, the peptide biomarker candidates most predominantly found in clinical samples, are presented. Data are available via ProteomeXchange with identifier PXD014522. As proof-of-principle, the most promising species-unique peptides were applied in targeted tandem MS-analyses of clinical samples and their relevance for identifications of the pathogens, i.e. proteotyping, was validated, thus demonstrating their potential as peptide biomarker candidates for diagnostics of infectious diseases.
Glycoproteomics and MS Proteomics [Collaborative]
PubMed 31941798
DOI 10.1074/mcp.RA119.001667
Crossref 10.1074/mcp.RA119.001667
pii: S1535-9476(20)35038-6
pmc: PMC7050107