Chromatin and Single-Cell RNA-Seq Profiling Reveal Dynamic Signaling and Metabolic Transitions during Human Spermatogonial Stem Cell Development.

Guo J, Grow EJ, Yi C, Mlcochova H, Maher GJ, Lindskog C, Murphy PJ, Wike CL, Carrell DT, Goriely A, Hotaling JM, Cairns BR

Cell Stem Cell 21 (4) 533-546.e6 [2017-10-05; online 2017-10-07]

Human adult spermatogonial stem cells (hSSCs) must balance self-renewal and differentiation. To understand how this is achieved, we profiled DNA methylation and open chromatin (ATAC-seq) in SSEA4(+) hSSCs, analyzed bulk and single-cell RNA transcriptomes (RNA-seq) in SSEA4(+) hSSCs and differentiating c-KIT(+) spermatogonia, and performed validation studies via immunofluorescence. First, DNA hypomethylation at embryonic developmental genes supports their epigenetic "poising" in hSSCs for future/embryonic expression, while core pluripotency genes (OCT4 and NANOG) were transcriptionally and epigenetically repressed. Interestingly, open chromatin in hSSCs was strikingly enriched in binding sites for pioneer factors (NFYA/B, DMRT1, and hormone receptors). Remarkably, single-cell RNA-seq clustering analysis identified four cellular/developmental states during hSSC differentiation, involving major transitions in cell-cycle and transcriptional regulators, splicing and signaling factors, and glucose/mitochondria regulators. Overall, our results outline the dynamic chromatin/transcription landscape operating in hSSCs and identify crucial molecular pathways that accompany the transition from quiescence to proliferation and differentiation.

Tissue Profiling [Collaborative]

QC bibliography QC xrefs

PubMed 28985528

DOI 10.1016/j.stem.2017.09.003

Crossref 10.1016/j.stem.2017.09.003

S1934-5909(17)30370-3

GEO GSE92277 [BulkRNA-Seq]

GEO GSE92280 [Genomic profiling of human spermatogonial stem cells]

GEO GSE92278 [Whole genome bisulfite sequencing]

GEO GSE92276 [scRNA-Seq]