Gising J, Belfrage AK, Alogheli H, Ehrenberg A, Åkerblom E, Svensson R, Artursson P, Karlén A, Danielson UH, Larhed M, Sandström A
J. Med. Chem. 57 (5) 1790-1801 [2014-03-13; online 2013-03-23]
Herein we describe the design, synthesis, inhibitory potency, and pharmacokinetic properties of a novel class of achiral peptidomimetic HCV NS3 protease inhibitors. The compounds are based on a dipeptidomimetic pyrazinone glycine P3P2 building block in combination with an aromatic acyl sulfonamide in the P1P1' position. Structure-activity relationship data and molecular modeling support occupancy of the S2 pocket from elongated R(6) substituents on the 2(1H)-pyrazinone core and several inhibitors with improved inhibitory potency down to Ki = 0.11 μM were identified. A major goal with the design was to produce inhibitors structurally dissimilar to the di- and tripeptide-based HCV protease inhibitors in advanced stages of development for which cross-resistance might be an issue. Therefore, the retained and improved inhibitory potency against the drug-resistant variants A156T, D168V, and R155K further strengthen the potential of this class of inhibitors. A number of the inhibitors were tested in in vitro preclinical profiling assays to evaluate their apparent pharmacokinetic properties. The various R(6) substituents were found to have a major influence on solubility, metabolic stability, and cell permeability.
Chemical Biology Consortium Sweden (CBCS) [Collaborative]
PubMed 23517538
DOI 10.1021/jm301887f
Crossref 10.1021/jm301887f
Uppsala Drug Optimization and Pharmaceutical Profiling (UDOPP) ADME of Therapeutics (UDOPP)