Pyruvate metabolism guides definitive lineage specification during hematopoietic emergence.

Oburoglu L, Mansell E, Canals I, Sigurdsson V, Guibentif C, Soneji S, Woods NB

EMBO Rep. 23 (2) e54384 [2022-02-03; online 2021-12-16]

During embryonic development, hematopoiesis occurs through primitive and definitive waves, giving rise to distinct blood lineages. Hematopoietic stem cells (HSCs) emerge from hemogenic endothelial (HE) cells, through endothelial-to-hematopoietic transition (EHT). In the adult, HSC quiescence, maintenance, and differentiation are closely linked to changes in metabolism. However, metabolic processes underlying the emergence of HSCs from HE cells remain unclear. Here, we show that the emergence of blood is regulated by multiple metabolic pathways that induce or modulate the differentiation toward specific hematopoietic lineages during human EHT. In both in vitro and in vivo settings, steering pyruvate use toward glycolysis or OXPHOS differentially skews the hematopoietic output of HE cells toward either an erythroid fate with primitive phenotype, or a definitive lymphoid fate, respectively. We demonstrate that glycolysis-mediated differentiation of HE toward primitive erythroid hematopoiesis is dependent on the epigenetic regulator LSD1. In contrast, OXPHOS-mediated differentiation of HE toward definitive hematopoiesis is dependent on cholesterol metabolism. Our findings reveal that during EHT, metabolism is a major regulator of primitive versus definitive hematopoietic differentiation.

Clinical Genomics Lund [Service]

PubMed 34914165

DOI 10.15252/embr.202154384

Crossref 10.15252/embr.202154384

pmc: PMC8811648
GEO: GSE141189

Publications 9.5.0