Proteomic Analysis of Mucosal and Systemic Responses to SARS-CoV-2 Antigen.

Martinson N, Gordhan B, Petkov S, Pillay A, Seiphetlo T, Singh N, Otwombe K, Lebina L, Fredolini C, Chiodi F, Fox J, Kana B, Herrera C

Vaccines (Basel) 11 (2) - [2023-02-02; online 2023-02-02]

The mucosal environment of the upper respiratory tract is the first barrier of protection against SARS-CoV-2 transmission. However, the mucosal factors involved in viral transmission and potentially modulating the capacity to prevent such transmission have not fully been identified. In this pilot proteomics study, we compared mucosal and systemic compartments in a South African cohort of vaccinated and unvaccinated individuals undergoing maxillofacial surgery with previous history of COVID-19 or not. Inflammatory profiles were analyzed in plasma, nasopharyngeal swabs, and nasal and oral tissue explant cultures, using Olink and Luminex technologies. SARS-CoV-2-specific antibody levels were measured in serum and tissue explants. An increased pro-inflammatory proteomic profile was measured in the nasal compartment compared to plasma. However, IP-10 and MIG levels were higher in secretions than in nasal tissue, and the opposite was observed for TGF-β. Nasal anti-SARS-CoV-2 spike IgG correlated with mucosal MIG expression for all participants. A further positive correlation was found with IP-10 in BioNTech/Pfizer-vaccinated individuals. Systemic levels of anti-SARS-CoV-2 spike IgG elicited by this vaccine correlated with plasma IL-10, IL-6 and HBD4. Proteomic profiles measured in mucosal tissues and secretions using combined technologies could reveal correlates of protection at the mucosal portals of viral entry.

Affinity Proteomics Stockholm [Service]

PubMed 36851212

DOI 10.3390/vaccines11020334

Crossref 10.3390/vaccines11020334

pii: vaccines11020334


Publications 9.5.0