Method To Visualize the Intratumor Distribution and Impact of Gemcitabine in Pancreatic Ductal Adenocarcinoma by Multimodal Imaging.

Strittmatter N, Richards FM, Race AM, Ling S, Sutton D, Nilsson A, Wallez Y, Barnes J, Maglennon G, Gopinathan A, Brais R, Wong E, Serra MP, Atkinson J, Smith A, Wilson J, Hamm G, Johnson TI, Dunlop CR, Kaistha BP, Bunch J, Sansom OJ, Takats Z, Andrén PE, Lau A, Barry ST, Goodwin RJA, Jodrell DI

Anal. Chem. 94 (3) 1795-1803 [2022-01-25; online 2022-01-10]

Gemcitabine (dFdC) is a common treatment for pancreatic cancer; however, it is thought that treatment may fail because tumor stroma prevents drug distribution to tumor cells. Gemcitabine is a pro-drug with active metabolites generated intracellularly; therefore, visualizing the distribution of parent drug as well as its metabolites is important. A multimodal imaging approach was developed using spatially coregistered mass spectrometry imaging (MSI), imaging mass cytometry (IMC), multiplex immunofluorescence microscopy (mIF), and hematoxylin and eosin (H&E) staining to assess the local distribution and metabolism of gemcitabine in tumors from a genetically engineered mouse model of pancreatic cancer (KPC) allowing for comparisons between effects in the tumor tissue and its microenvironment. Mass spectrometry imaging (MSI) enabled the visualization of the distribution of gemcitabine (100 mg/kg), its phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP, and the inactive metabolite dFdU. Distribution was compared to small-molecule ATR inhibitor AZD6738 (25 mg/kg), which was codosed. Gemcitabine metabolites showed heterogeneous distribution within the tumor, which was different from the parent compound. The highest abundance of dFdCMP, dFdCDP, and dFdCTP correlated with distribution of endogenous AMP, ADP, and ATP in viable tumor cell regions, showing that gemcitabine active metabolites are reaching the tumor cell compartment, while AZD6738 was located to nonviable tumor regions. The method revealed that the generation of active, phosphorylated dFdC metabolites as well as treatment-induced DNA damage primarily correlated with sites of high proliferation in KPC PDAC tumor tissue, rather than sites of high parent drug abundance.

Spatial Mass Spectrometry [Collaborative]

PubMed 35005896

DOI 10.1021/acs.analchem.1c04579

Crossref 10.1021/acs.analchem.1c04579

Publications 8.1.0