Autoantibodies targeting malondialdehyde-modifications in rheumatoid arthritis regulate osteoclasts via inducing glycolysis and lipid biosynthesis.

Sakuraba K, Krishnamurthy A, Sun J, Zheng X, Xu C, Peng B, Engström M, Jakobsson PJ, Wermeling F, Catrina S, Grönwall C, Catrina AI, Réthi B

J. Autoimmun. 133 (-) 102903 [2022-09-13; online 2022-09-13]

Proteins subjected to post-translational modifications, such as citrullination, carbamylation, acetylation or malondialdehyde (MDA)-modification are targeted by autoantibodies in seropositive rheumatoid arthritis (RA). Epidemiological and experimental studies have both suggested the pathogenicity of such humoral autoimmunity, however, molecular mechanisms triggered by anti-modified protein antibodies have remained to be identified. Here we describe in detail the pathways induced by anti-MDA modified protein antibodies that were obtained from synovial B cells of RA patients and that possessed robust osteoclast stimulatory potential and induced bone erosion in vivo. Anti-MDA antibodies boosted glycolysis in developing osteoclasts via an FcγRI, HIF-1α and MYC-dependent mechanism and subsequently increased oxidative phosphorylation. Osteoclast development required robust phosphoglyceride and triacylglyceride biosynthesis, which was also enhanced by anti-MDA by modulating citrate production and expression of the glycerol-3-phosphate dehydrogenase 1 (GPD1) and glycerol-3-phosphate acyltransferase 2 (GPAT2) genes. In summary, we described novel metabolic pathways instrumental for osteoclast differentiation, which were targeted by anti-MDA antibodies, accelerating bone erosion, a central component of RA pathogenesis.

Swedish Metabolomics Centre (SMC) [Service]

PubMed 36108504

DOI 10.1016/j.jaut.2022.102903

Crossref 10.1016/j.jaut.2022.102903

pii: S0896-8411(22)00111-1


Publications 9.5.1