Metabolic resistance to the inhibition of mitochondrial transcription revealed by CRISPR-Cas9 screen.

Mennuni M, Filograna R, Felser A, Bonekamp NA, Giavalisco P, Lytovchenko O, Larsson N

EMBO Rep. 23 (1) e53054 [2022-01-05; online 2021-11-15]

Cancer cells depend on mitochondria to sustain their increased metabolic need and mitochondria therefore constitute possible targets for cancer treatment. We recently developed small-molecule inhibitors of mitochondrial transcription (IMTs) that selectively impair mitochondrial gene expression. IMTs have potent antitumor properties in vitro and in vivo, without affecting normal tissues. Because therapy-induced resistance is a major constraint to successful cancer therapy, we investigated mechanisms conferring resistance to IMTs. We employed a CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats)-(CRISP-associated protein 9) whole-genome screen to determine pathways conferring resistance to acute IMT1 treatment. Loss of genes belonging to von Hippel-Lindau (VHL) and mammalian target of rapamycin complex 1 (mTORC1) pathways caused resistance to acute IMT1 treatment and the relevance of these pathways was confirmed by chemical modulation. We also generated cells resistant to chronic IMT treatment to understand responses to persistent mitochondrial gene expression impairment. We report that IMT1-acquired resistance occurs through a compensatory increase of mitochondrial DNA (mtDNA) expression and cellular metabolites. We found that mitochondrial transcription factor A (TFAM) downregulation and inhibition of mitochondrial translation impaired survival of resistant cells. The identified susceptibility and resistance mechanisms to IMTs may be relevant for different types of mitochondria-targeted therapies.

CRISPR Functional Genomics [Service]

NGI Short read [Service]

National Genomics Infrastructure [Service]

PubMed 34779571

DOI 10.15252/embr.202153054

Crossref 10.15252/embr.202153054

pmc: PMC8728608

Publications 7.2.7