Srebf1 Controls Midbrain Dopaminergic Neurogenesis.

Toledo EM, Yang S, Gyllborg D, van Wijk KE, Sinha I, Varas-Godoy M, Grigsby CL, Lönnerberg P, Islam S, Steffensen KR, Linnarsson S, Arenas E

Cell Rep 31 (5) 107601 [2020-05-05; online 2020-05-07]

Liver X receptors (LXRs) and their ligands are potent regulators of midbrain dopaminergic (mDA) neurogenesis and differentiation. However, the molecular mechanisms by which LXRs control these functions remain to be elucidated. Here, we perform a combined transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analysis of midbrain cells after LXR activation, followed by bioinformatic analysis to elucidate the transcriptional networks controlling mDA neurogenesis. Our results identify the basic helix-loop-helix transcription factor sterol regulatory element binding protein 1 (SREBP1) as part of a cluster of proneural transcription factors in radial glia and as a regulator of transcription factors controlling mDA neurogenesis, such as Foxa2. Moreover, loss- and gain-of-function experiments in vitro and in vivo demonstrate that Srebf1 is both required and sufficient for mDA neurogenesis. Our data, thus, identify Srebf1 as a central player in mDA neurogenesis.

Bioinformatics Compute and Storage [Service]

NGI Stockholm (Genomics Applications) [Service]

NGI Stockholm (Genomics Production) [Service]

National Genomics Infrastructure [Service]

QC bibliography QC xrefs

PubMed 32375051

DOI 10.1016/j.celrep.2020.107601

Crossref 10.1016/j.celrep.2020.107601

pii: S2211-1247(20)30550-7