A metabarcoding analysis of the wrackbed microbiome indicates a phylogeographic break along the North Sea-Baltic Sea transition zone.

Berdan EL, Roger F, Wellenreuther M, Kinnby A, Cervin G, Pereyra R, Töpel M, Johannesson K, Butlin RK, André C

Environ. Microbiol. 25 (9) 1659-1673 [2023-09-00; online 2023-04-09]

Sandy beaches are biogeochemical hotspots that bridge marine and terrestrial ecosystems via the transfer of organic matter, such as seaweed (termed wrack). A keystone of this unique ecosystem is the microbial community, which helps to degrade wrack and re-mineralize nutrients. However, little is known about this community. Here, we characterize the wrackbed microbiome as well as the microbiome of a primary consumer, the seaweed fly Coelopa frigida, and examine how they change along one of the most studied ecological gradients in the world, the transition from the marine North Sea to the brackish Baltic Sea. We found that polysaccharide degraders dominated both microbiomes, but there were still consistent differences between wrackbed and fly samples. Furthermore, we observed a shift in both microbial communities and functionality between the North and Baltic Sea driven by changes in the frequency of different groups of known polysaccharide degraders. We hypothesize that microbes were selected for their abilities to degrade different polysaccharides corresponding to a shift in polysaccharide content in the different seaweed communities. Our results reveal the complexities of both the wrackbed microbial community, with different groups specialized to different roles, and the cascading trophic consequences of shifts in the near shore algal community.

Bioinformatics Support for Computational Resources [Service]

PubMed 37032322

DOI 10.1111/1462-2920.16379

Crossref 10.1111/1462-2920.16379

Publications 9.5.0