Discovery and Hit-to-Lead Optimization of Benzothiazole Scaffold-Based DNA Gyrase Inhibitors with Potent Activity against Acinetobacter baumannii and Pseudomonas aeruginosa.

Cotman AE, Durcik M, Benedetto Tiz D, Fulgheri F, Secci D, Sterle M, Možina Š, Skok Ž, Zidar N, Zega A, Ilaš J, Peterlin Mašič L, Tomašič T, Hughes D, Huseby DL, Cao S, Garoff L, Berruga Fernández T, Giachou P, Crone L, Simoff I, Svensson R, Birnir B, Korol SV, Jin Z, Vicente F, Ramos MC, de la Cruz M, Glinghammar B, Lenhammar L, Henderson SR, Mundy JEA, Maxwell A, Stevenson CEM, Lawson DM, Janssen GV, Sterk GJ, Kikelj D

J. Med. Chem. 66 (2) 1380-1425 [2023-01-26; online 2023-01-12]

We have developed compounds with a promising activity against Acinetobacter baumannii and Pseudomonas aeruginosa, which are both on the WHO priority list of antibiotic-resistant bacteria. Starting from DNA gyrase inhibitor 1, we identified compound 27, featuring a 10-fold improved aqueous solubility, a 10-fold improved inhibition of topoisomerase IV from A. baumannii and P. aeruginosa, a 10-fold decreased inhibition of human topoisomerase IIα, and no cross-resistance to novobiocin. Cocrystal structures of 1 in complex with Escherichia coli GyrB24 and (S)-27 in complex with A. baumannii GyrB23 and P. aeruginosa GyrB24 revealed their binding to the ATP-binding pocket of the GyrB subunit. In further optimization steps, solubility, plasma free fraction, and other ADME properties of 27 were improved by fine-tuning of lipophilicity. In particular, analogs of 27 with retained anti-Gram-negative activity and improved plasma free fraction were identified. The series was found to be nongenotoxic, nonmutagenic, devoid of mitochondrial toxicity, and possessed no ion channel liabilities.

Drug Discovery and Development (DDD) [Service]

PubMed 36634346

DOI 10.1021/acs.jmedchem.2c01597

Crossref 10.1021/acs.jmedchem.2c01597

pmc: PMC9884090


Publications 9.5.1