Petrus-Reurer S, Winblad N, Kumar P, Gorchs L, Chrobok M, Wagner AK, Bartuma H, Lardner E, Aronsson M, Plaza Reyes Á, André H, Alici E, Kaipe H, Kvanta A, Lanner F
Stem Cell Reports 14 (4) 648-662 [2020-04-14; online 2020-03-19]
Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells could serve as a replacement therapy in advanced stages of age-related macular degeneration. However, allogenic hESC-RPE transplants trigger immune rejection, supporting a strategy to evade their immune recognition. We established single-knockout beta-2 microglobulin (SKO-B2M), class II major histocompatibility complex transactivator (SKO-CIITA) and double-knockout (DKO) hESC lines that were further differentiated into corresponding hESC-RPE lines lacking either surface human leukocyte antigen class I (HLA-I) or HLA-II, or both. Activation of CD4+ and CD8+ T-cells was markedly lower by hESC-RPE DKO cells, while natural killer cell cytotoxic response was not increased. After transplantation of SKO-B2M, SKO-CIITA, or DKO hESC-RPEs in a preclinical rabbit model, donor cell rejection was reduced and delayed. In conclusion, we have developed cell lines that lack both HLA-I and -II antigens, which evoke reduced T-cell responses in vitro together with reduced rejection in a large-eyed animal model.
Bioinformatics Support for Computational Resources [Service]
NGI Stockholm (Genomics Applications) [Service]
NGI Stockholm (Genomics Production) [Service]
National Genomics Infrastructure [Service]
PubMed 32197113
DOI 10.1016/j.stemcr.2020.02.006
Crossref 10.1016/j.stemcr.2020.02.006
pii: S2213-6711(20)30062-X
pmc: PMC7160308