Serotonin, ATRX, and DAXX Expression in Pituitary Adenomas: Markers in the Differential Diagnosis of Neuroendocrine Tumors of the Sellar Region.

Casar-Borota O, Botling J, Granberg D, Stigare J, Wikström J, Boldt HB, Kristensen BW, Pontén F, Trouillas J

Am. J. Surg. Pathol. 41 (9) 1238-1246 [2017-09-00; online 2017-07-19]

Differential diagnosis based on morphology and immunohistochemistry between a clinically nonfunctioning pituitary neuroendocrine tumor (NET)/pituitary adenoma and a primary or secondary NET of nonpituitary origin in the sellar region may be difficult. Serotonin, a frequently expressed marker in the NETs, has not been systematically evaluated in pituitary NETs. Although mutations in ATRX or DAXX have been reported in a significant proportion of pancreatic NETs, the mutational status of ATRX and DAXX and their possible pathogenetic role in pituitary NETs are unknown. Facing a difficult diagnostic case of an invasive serotonin and adrenocorticotroph hormone immunoreactive NET in the sellar region, we explored the immunohistochemical expression of serotonin, ATRX, and DAXX in a large series of pituitary endocrine tumors of different types from 246 patients and in 2 corticotroph carcinomas. None of the pituitary tumors expressed serotonin, suggesting that serotonin immunoreactive sellar tumors represent primary or secondary NETs of nonpituitary origin. Normal expression of ATRX and DAXX in pituitary tumors suggests that ATRX and DAXX do not play a role in the pathogenesis of pituitary endocrine tumors that remain localized to the sellar and perisellar region. A lack of ATRX or DAXX in a sellar NET suggests a nonpituitary NET, probably of pancreatic origin. One of the 2 examined corticotroph carcinomas, however, demonstrated negative ATRX immunolabeling due to an ATRX gene mutation. Further studies on a larger cohort of pituitary carcinomas are needed to clarify whether ATRX mutations may contribute to the metastatic potential in a subset of pituitary NETs.

Tissue Profiling [Collaborative]

PubMed 28719461

DOI 10.1097/PAS.0000000000000908

Crossref 10.1097/PAS.0000000000000908


Publications 9.5.0