Nucleosome regulatory dynamics in response to TGFβ.

Enroth S, Andersson R, Bysani M, Wallerman O, Termén S, Tuch BB, De La Vega FM, Heldin CH, Moustakas A, Komorowski J, Wadelius C

Nucleic Acids Res. 42 (11) 6921-6934 [2014-06-00; online 2014-04-29]

Nucleosomes play important roles in a cell beyond their basal functionality in chromatin compaction. Their placement affects all steps in transcriptional regulation, from transcription factor (TF) binding to messenger ribonucleic acid (mRNA) synthesis. Careful profiling of their locations and dynamics in response to stimuli is important to further our understanding of transcriptional regulation by the state of chromatin. We measured nucleosome occupancy in human hepatic cells before and after treatment with transforming growth factor beta 1 (TGFβ1), using massively parallel sequencing. With a newly developed method, SuMMIt, for precise positioning of nucleosomes we inferred dynamics of the nucleosomal landscape. Distinct nucleosome positioning has previously been described at transcription start site and flanking TF binding sites. We found that the average pattern is present at very few sites and, in case of TF binding, the double peak surrounding the sites is just an artifact of averaging over many loci. We systematically searched for depleted nucleosomes in stimulated cells compared to unstimulated cells and identified 24 318 loci. Depending on genomic annotation, 44-78% of them were over-represented in binding motifs for TFs. Changes in binding affinity were verified for HNF4α by qPCR. Strikingly many of these loci were associated with expression changes, as measured by RNA sequencing.

NGI Uppsala (Uppsala Genome Center)

National Genomics Infrastructure

PubMed 24771338

DOI 10.1093/nar/gku326

Crossref 10.1093/nar/gku326

pii: gku326
pmc: PMC4066760

Publications 9.5.0