Genetic variants and disease-associated factors contribute to enhanced interferon regulatory factor 5 expression in blood cells of patients with systemic lupus erythematosus.

Feng D, Stone RC, Eloranta ML, Sangster-Guity N, Nordmark G, Sigurdsson S, Wang C, Alm G, Syvänen AC, Rönnblom L, Barnes BJ

Arthritis Rheum. 62 (2) 562-573 [2010-02-00; online 2010-01-30]

Genetic variants of the interferon (IFN) regulatory factor 5 gene (IRF5) are associated with susceptibility to systemic lupus erythematosus (SLE). The contribution of these variants to IRF-5 expression in primary blood cells of SLE patients has not been addressed, nor has the role of type I IFNs. The aim of this study was to determine the association between increased IRF-5 expression and the IRF5 risk haplotype in SLE patients. IRF-5 transcript and protein levels in 44 Swedish patients with SLE and 16 healthy controls were measured by quantitative real-time polymerase chain reaction, minigene assay, and flow cytometry. Single-nucleotide polymorphisms rs2004640, rs10954213, and rs10488631 and the CGGGG insertion/deletion were genotyped in these patients. Genotypes of these polymorphisms defined both a common risk haplotype and a common protective haplotype. IRF-5 expression and alternative splicing were significantly up-regulated in SLE patients compared with healthy donors. Enhanced transcript and protein levels were associated with the risk haplotype of IRF5; rs10488631 displayed the only significant independent association that correlated with increased transcription from the noncoding first exon 1C. Minigene experiments demonstrated an important role for rs2004640 and the CGGGG insertion/deletion, along with type I IFNs, in regulating IRF5 expression. This study provides the first formal proof that IRF-5 expression and alternative splicing are significantly up-regulated in primary blood cells of patients with SLE. Furthermore, the risk haplotype is associated with enhanced IRF-5 transcript and protein expression in patients with SLE.

NGI Uppsala (SNP&SEQ Technology Platform)

National Genomics Infrastructure

PubMed 20112383

DOI 10.1002/art.27223

Crossref 10.1002/art.27223

pmc: PMC3213692
mid: NIHMS190566


Publications 9.5.0