Limosilactobacillus reuteri DSM 17938 Produce Bioactive Components during Formulation in Sucrose.

Ermann Lundberg L, Mata Forsberg M, Lemanczyk J, Sverremark-Ekström E, Sandström C, Roos S, Håkansson S

Microorganisms 12 (10) - [2024-10-12; online 2024-10-12]

Improved efficacy of probiotics can be achieved by using different strategies, including the optimization of production parameters. The impact of fermentation parameters on bacterial physiology is a frequently investigated topic, but what happens during the formulation, i.e., the step where the lyoprotectants are added prior to freeze-drying, is less studied. In addition to this, the focus of process optimization has often been yield and stability, while effects on bioactivity have received less attention. In this work, we investigated different metabolic activities of the probiotic strain Limosilactobacillus reuteri DSM 17938 during formulation with the freeze-drying protectant sucrose. We discovered that the strain consumed large quantities of the added sucrose and produced an exopolysaccharide (EPS). Using NMR, we discovered that the produced EPS was a glucan with α-1,4 and α-1,6 glycosidic bonds, but also that other metabolites were produced. The conversion of the lyoprotectant is hereafter designated lyoconversion. By also analyzing the samples with GCMS, additional potential bioactive compounds could be detected. Among these were tryptamine, a ligand for the aryl hydrocarbon receptor, and glycerol, a precursor for the antimicrobial compound reuterin (3-hydroxypropionaldehyde). To exemplify the bioactivity potential of lyoconversion, lyoconverted samples as well as purified EPS were tested in a model for immunomodulation. Both lyoconverted samples and purified EPS induced higher expression levels of IL-10 (2 times) and IL-6 (4-6 times) in peripheral blood mononuclear cells than non-converted control samples. We further found that the initial cultivation of DSM 17938 with sucrose as a sugar substrate, instead of glucose, improved the ability to convert sucrose in the lyoprotectant into EPS and other metabolites. Lyoconversion did not affect the viability of the bacteria but was detrimental to freeze-drying survival, an issue that needs to be addressed in the future. In conclusion, we show that the metabolic activities of the bacteria during the formulation step can be used as a tool to alter the activity of the bacteria and thereby potentially improve probiotic efficacy.

Swedish Metabolomics Centre (SMC) [Service]

PubMed 39458367

DOI 10.3390/microorganisms12102058

Crossref 10.3390/microorganisms12102058

pmc: PMC11510291
pii: microorganisms12102058


Publications 9.5.1