Plasma proteome alterations by MAPK inhibitors in BRAFV600-mutated metastatic cutaneous melanoma.

Babačić H, Eriksson H, Pernemalm M

Neoplasia 23 (8) 783-791 [2021-08-00; online 2021-07-08]

Approximately half of metastatic cutaneous melanomas (CM) harbor a mutation in the BRAF protooncogene, upregulating the mitogen-activated protein kinase (MAPK)-pathway. The development of inhibitors targeting the MAPK pathway (MAPKi), i.e., BRAF- and MEK-inhibitors (BRAFi and MEKi), have substantially improved the survival in BRAFV600E/K-mutated stage IV metastatic CM. However, most patients develop resistance to treatment and no predictive biomarkers exist in practice. This study aimed at discovering plasma proteome changes during treatment MAPKi in patients with metastatic (stage IV) CM. Matched plasma samples before (pre) and during treatment (trm) from 23 patients with stage IV CM, treated with BRAF-inhibitors (BRAFi) alone or BRAF- and MEK- inhibitors combined (BRAFi and MEKi), were collected and analyzed with targeted proteomics by proximity extension assays. Additionally, plasma from 9 patients treated with BRAFi and MEKi was analyzed with in-depth high-resolution isoelectric focusing liquid-chromatography mass-spectrometry proteomics. Alterations of plasma proteins involved in granzyme and interferon gamma pathways were detected in patients treated with BRAFi, and cell adhesion-, neutrophil degranulation-, and proteolysis pathways in patients treated with BRAFi and MEKi. Several proteins were associated with progression-free survival after MAPKi treatment. We show that the majority of the altered plasma proteins were traceable to BRAFV600E-mutant metastatic CM tissue at mRNA level in 154 patients from the TCGA, further strengthening their involvement in tumoral response to treatment. This wide screen of plasma proteins unravels proteins that may serve as predictive and/or prognostic biomarkers of MAPKi treatment, opening a window of opportunity for plasma biomarker discovery in MAPKi-treatment of BRAFV600-mutant metastatic CM.

Affinity Proteomics Uppsala [Service]

PubMed 34246984

DOI 10.1016/j.neo.2021.06.002

Crossref 10.1016/j.neo.2021.06.002

pii: S1476-5586(21)00042-7
pmc: PMC8274243


Publications 9.5.0