De Jode A, Faria R, Formenti G, Sims Y, Smith TP, Tracey A, Wood JMD, Zagrodzka ZB, Johannesson K, Butlin RK, Leder EH
Genome Biol Evol 16 (4) - [2024-04-02; online 2024-04-08]
The intertidal gastropod Littorina saxatilis is a model system to study speciation and local adaptation. The repeated occurrence of distinct ecotypes showing different levels of genetic divergence makes L. saxatilis particularly suited to study different stages of the speciation continuum in the same lineage. A major finding is the presence of several large chromosomal inversions associated with the divergence of ecotypes and, specifically, the species offers a system to study the role of inversions in this divergence. The genome of L. saxatilis is 1.35 Gb and composed of 17 chromosomes. The first reference genome of the species was assembled using Illumina data, was highly fragmented (N50 of 44 kb), and was quite incomplete, with a BUSCO completeness of 80.1% on the Metazoan dataset. A linkage map of one full-sibling family enabled the placement of 587 Mbp of the genome into 17 linkage groups corresponding to the haploid number of chromosomes, but the fragmented nature of this reference genome limited the understanding of the interplay between divergent selection and gene flow during ecotype formation. Here, we present a newly generated reference genome that is highly contiguous, with a N50 of 67 Mb and 90.4% of the total assembly length placed in 17 super-scaffolds. It is also highly complete with a BUSCO completeness of 94.1% of the Metazoa dataset. This new reference will allow for investigations into the genomic regions implicated in ecotype formation as well as better characterization of the inversions and their role in speciation.
Bioinformatics Support for Computational Resources [Service]
PubMed 38584387
DOI 10.1093/gbe/evae076
Crossref 10.1093/gbe/evae076
pmc: PMC11050657
pii: 7641934