Scheduled maintenance This site will be offline from 13:30 to 15:00 CEST on Monday, 21 October 2024 in order to be moved to a new infrastructure. We apologise for the inconvenience. Please check the Slack channel #dc-system-status for updates. The development team can be contacted at datacentre@scilifelab.se if you have any question.

ADAR3 modulates neuronal differentiation and regulates mRNA stability and translation.

Karlström V, Sagredo EA, Planells J, Welinder C, Jungfleisch J, Barrera-Conde A, Engfors L, Daniel C, Gebauer F, Visa N, Öhman M

Nucleic Acids Res. - (-) - [2024-09-01; online 2024-09-01]

ADAR3 is a catalytically inactive member of the family of adenosine deaminases acting on RNA (ADARs). Here we have investigated its function in the context of the developing mouse brain. The expression of ADAR3 gradually increases throughout embryogenesis and drops after birth. Using primary cortical neurons, we show that ADAR3 is only expressed in a subpopulation of in vitro differentiated neurons, which suggests specific functions rather than being a general regulator of ADAR editing in the brain. The analysis of the ADAR3 interactome suggested a role in mRNA stability and translation, and we show that expression of ADAR3 in a neuronal cell line that is otherwise ADAR3-negative changes the expression and stability of a large number of mRNAs. Notably, we show that ADAR3 associates with polysomes and inhibits translation. We propose that ADAR3 binds to target mRNAs and stabilizes them in non-productive polysome complexes. Interestingly, the expression of ADAR3 downregulates genes related to neuronal differentiation and inhibits neurofilament outgrowth in vitro. In summary, we propose that ADAR3 negatively regulates neuronal differentiation, and that it does so by regulating mRNA stability and translation in an editing-independent manner.

NGI Short read [Service]

NGI Stockholm (Genomics Production) [Service]

National Genomics Infrastructure [Service]

PubMed 39217468

DOI 10.1093/nar/gkae753

Crossref 10.1093/nar/gkae753

pii: 7747201


Publications 9.5.0