Whole genome sequencing unveils genetic heterogeneity in optic nerve hypoplasia.

Dahl S, Pettersson M, Eisfeldt J, Schröder AK, Wickström R, Teär Fahnehjelm K, Anderlid BM, Lindstrand A

PLoS ONE 15 (2) e0228622 [2020-02-10; online 2020-02-10]

Optic nerve hypoplasia (ONH) is a congenital malformation with a reduced number of retinal ganglion cell axons in a thin optic nerve. It is a common cause of visual impairment in children and ONH is associated with neurodevelopmental disorders, pituitary hormone deficiencies, and brain malformations. In most cases, the aetiology is unknown, but both environmental factors and genetic causes have been described. This study aimed to identify genetic variants underlying ONH in a well-characterised cohort of individuals with ONH. We performed array comparative genomic hybridization and whole genome sequencing in 29 individuals with ONH. Rare variants were verified by Sanger sequencing and inheritance was assessed in parental samples. We identified 11 rare single nucleotide variants (SNVs) in ten individuals, including a homozygous variant in KIF7 (previously associated with Joubert syndrome), a heterozygous de novo variant in COL4A1 (previously described in an individual with porencephaly), and a homozygous variant in COL4A2. In addition, one individual harboured a heterozygous variant in OPA1 and a heterozygous variant in COL4A1, both were inherited and assessed as variants of unknown clinical significance. Finally, a heterozygous deletion of 341 kb involving exons 7-18 of SOX5 (associated with Lamb-Schaffer syndrome) was identified in one individual. The overall diagnostic yield of pathogenic or likely pathogenic variants in individuals with ONH using whole genome sequencing was 4/29 (14%). Our results show that there is a genetic heterogeneity in ONH and indicate that genetic causes of ONH are not rare. We conclude that genetic testing is valuable in a substantial proportion of the individuals with ONH, especially in cases with non-isolated ONH.

Bioinformatics Support for Computational Resources [Service]

NGI Stockholm (Genomics Applications) [Service]

NGI Stockholm (Genomics Production) [Service]

National Genomics Infrastructure [Service]

PubMed 32040484

DOI 10.1371/journal.pone.0228622

Crossref 10.1371/journal.pone.0228622

pii: PONE-D-19-12114
pmc: PMC7010252


Publications 9.5.0