Peona V, Martelossi J, Almojil D, Bocharkina J, Brännström I, Brown M, Cang A, Carrasco-Valenzuela T, DeVries J, Doellman M, Elsner D, Espíndola-Hernández P, Montoya GF, Gaspar B, Zagorski D, Hałakuc P, Ivanovska B, Laumer C, Lehmann R, Boštjančić LL, Mashoodh R, Mazzoleni S, Mouton A, Nilsson MA, Pei Y, Potente G, Provataris P, Pardos-Blas JR, Raut R, Sbaffi T, Schwarz F, Stapley J, Stevens L, Sultana N, Symonova R, Tahami MS, Urzì A, Yang H, Yusuf A, Pecoraro C, Suh A
Mob DNA 15 (1) 10 [2024-05-06; online 2024-05-06]
The advancement of sequencing technologies results in the rapid release of hundreds of new genome assemblies a year providing unprecedented resources for the study of genome evolution. Within this context, the significance of in-depth analyses of repetitive elements, transposable elements (TEs) in particular, is increasingly recognized in understanding genome evolution. Despite the plethora of available bioinformatic tools for identifying and annotating TEs, the phylogenetic distance of the target species from a curated and classified database of repetitive element sequences constrains any automated annotation effort. Moreover, manual curation of raw repeat libraries is deemed essential due to the frequent incompleteness of automatically generated consensus sequences. Here, we present an example of a crowd-sourcing effort aimed at curating and annotating TE libraries of two non-model species built around a collaborative, peer-reviewed teaching process. Manual curation and classification are time-consuming processes that offer limited short-term academic rewards and are typically confined to a few research groups where methods are taught through hands-on experience. Crowd-sourcing efforts could therefore offer a significant opportunity to bridge the gap between learning the methods of curation effectively and empowering the scientific community with high-quality, reusable repeat libraries. The collaborative manual curation of TEs from two tardigrade species, for which there were no TE libraries available, resulted in the successful characterization of hundreds of new and diverse TEs in a reasonable time frame. Our crowd-sourcing setting can be used as a teaching reference guide for similar projects: A hidden treasure awaits discovery within non-model organisms.
Bioinformatics Support for Computational Resources [Service]
PubMed 38711146
DOI 10.1186/s13100-024-00319-8
Crossref 10.1186/s13100-024-00319-8
pmc: PMC11071193
pii: 10.1186/s13100-024-00319-8