Yu NY, Bieder A, Raman A, Mileti E, Katayama S, Einarsdottir E, Fredholm BB, Falk A, Tapia-Páez I, Daub CO, Kere J
Sci Rep 7 (1) 11458 [2017-09-13; online 2017-09-13]
Caffeine is a widely consumed psychoactive substance, but little is known about the effects of caffeine stimulation on global gene expression changes in neurons. Here, we conducted gene expression profiling of human neuroepithelial stem cell-derived neurons, stimulated with normal consumption levels of caffeine (3 μM and 10 μM), over a period of 9 h. We found dosage-dependent activation of immediate early genes after 1 h. Neuronal projection development processes were up-regulated and negative regulation of axon extension processes were down-regulated at 3 h. In addition, genes involved in extracellular matrix organization, response for wound healing, and regulation of immune system processes were down-regulated by caffeine at 3 h. This study identified novel genes within the neuronal projection guidance pathways that respond to acute caffeine stimulation and suggests potential mechanisms for the effects of caffeine on neuronal cells.
Bioinformatics Support for Computational Resources [Service]
NGI Stockholm (Genomics Applications) [Service]
NGI Stockholm (Genomics Production) [Service]
National Genomics Infrastructure [Service]
PubMed 28904364
DOI 10.1038/s41598-017-11574-6
Crossref 10.1038/s41598-017-11574-6
pii: 10.1038/s41598-017-11574-6
pmc: PMC5597620
BioProject: PRJEB20092 raw RNA-seq