STK25 regulates oxidative capacity and metabolic efficiency in adipose tissue.

Sütt S, Cansby E, Paul A, Amrutkar M, Nuñez-Durán E, Kulkarni NM, Ståhlman M, Borén J, Laurencikiene J, Howell BW, Enerbäck S, Mahlapuu M

J Endocrinol 238 (3) 187-202 [2018-09-00; online 2018-05-24]

Whole-body energy homeostasis at over-nutrition critically depends on how well adipose tissue remodels in response to excess calories. We recently identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid storage in non-adipose tissue and systemic insulin resistance in the context of nutritional stress. Here, we investigated the role of STK25 in regulation of adipose tissue dysfunction in mice challenged with a high-fat diet. We found that overexpression of STK25 in high-fat-fed mice resulted in impaired mitochondrial function and aggravated hypertrophy, inflammatory infiltration and fibrosis in adipose depots. Reciprocally, Stk25-knockout mice displayed improved mitochondrial function and were protected against diet-induced excessive fat storage, meta-inflammation and fibrosis in brown and white adipose tissues. Furthermore, in rodent HIB-1B cell line, STK25 depletion resulted in enhanced mitochondrial activity and consequently, reduced lipid droplet size, demonstrating an autonomous action for STK25 within adipocytes. In summary, we provide the first evidence for a key function of STK25 in controlling the metabolic balance of lipid utilization vs lipid storage in brown and white adipose depots, suggesting that repression of STK25 activity offers a potential strategy for establishing healthier adipose tissue in the context of chronic exposure to dietary lipids.

Integrated Microscopy Technologies Gothenburg [Service]

QC bibliography QC xrefs

PubMed 29794231

DOI 10.1530/JOE-18-0182

Crossref 10.1530/JOE-18-0182

pii: JOE-18-0182