Ehn E, Eisfeldt J, Laffita-Mesa JM, Thonberg H, Schoumans J, Portaankorva AM, Viitanen M, Lindstrand A, Nennesemo I, Graff C
Sci Rep 15 (1) 2912 [2025-01-23; online 2025-01-23]
Copy number variation (CNV) of the amyloid-β precursor protein gene (APP) is a known cause of autosomal dominant Alzheimer disease (ADAD), but de novo genetic variants causing ADAD are rare. We report a mother and daughter with neuropathologically confirmed definite Alzheimer disease (AD) and extensive cerebral amyloid angiopathy (CAA). Copy number analysis identified an increased number of APP copies and genome sequencing (GS) revealed the underlying complex genomic rearrangement (CGR) including a triplication of APP with two unique breakpoint junctions (BPJs). The mosaic state in the mother had likely occurred de novo. Digital droplet PCR (ddPCR) on 42 different tissues, including 17 different brain regions, showed the derivative chromosome at varying mosaic levels (20-96%) in the mother who had symptom onset at age 58 years. In contrast, the derivative chromosome was present in all analyzed cells in the daughter whose symptom onset was at 34 years. This study reveals the architecture of a de novo CGR causing APP triplication and ADAD with a striking difference in age at onset between the fully heterozygous daughter compared to the mosaic mother. The GS analysis identified the complexity of the CGR illustrating its usefulness in identifying structural variants (SVs) in neurodegenerative disorders.
NGI Stockholm (Genomics Production) [Service]
National Genomics Infrastructure [Service]
PubMed 39849058
DOI 10.1038/s41598-025-86645-0
Crossref 10.1038/s41598-025-86645-0
pmc: PMC11759332
pii: 10.1038/s41598-025-86645-0