Increased antibiotic efficacy and noninvasive monitoring of Staphylococcus epidermidis biofilms using per-cysteamine-substituted γ-cyclodextrin - A delivery effect validated by fluorescence microscopy.

Thomsen H, Agnes M, Uwangue O, Persson L, Mattsson M, Graf FE, Kasimati EM, Yannakopoulou K, Ericson MB, Farewell A

Int J Pharm 587 (-) 119646 [2020-09-25; online 2020-07-14]

Limited and poor delivery of antibiotics is cited as one reason for the difficulty in treating antibiotic-resistant biofilms associated with chronic infections. We investigate the effectiveness of a positively charged, single isomer cyclodextrin derivative, octakis[6-(2-aminoethylthio)-6-deoxy]-γ-CD (γCys) to improve the delivery of antibiotics to biofilms. Using multiphoton laser scanning microscopy complemented with super-resolution fluorescence microscopy, we showed that γCys tagged with fluorescein (FITC) is uniformly distributed throughout live S. epidermidis biofilm cultures in vitro and results suggest it is localized extracellularly in the biofilm matrix. NMR spectroscopic data in aqueous solution confirm that γCys forms inclusion complexes with both the antibiotics oxacillin and rifampicin. Efficacy of γCys/antibiotic (oxacillin and rifampicin) was measured in the biofilms. While treatment with γCys/oxacillin had little improvement over oxacillin alone, γCys/rifampicin reduced the biofilm viability to background levels demonstrating a remarkable improvement over rifampicin alone. The strong synergistic effect for γCys/rifampicin is at this stage not clearly understood, but plausible explanations are related to increased solubility of rifampicin upon complexation and/or synergistic interference with components of the biofilm. The results demonstrate that designed cyclodextrin nanocarriers, like γCys, efficiently deliver suitable antibiotics to biofilms and that fluorescence microscopy offers a novel approach for mechanistic investigations.

Integrated Microscopy Technologies Gothenburg [Service]

PubMed 32679261

DOI 10.1016/j.ijpharm.2020.119646

Crossref 10.1016/j.ijpharm.2020.119646

pii: S0378-5173(20)30630-X


Publications 9.5.1