Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests.

Wallander H, Johansson U, Sterkenburg E, Brandström Durling M, Lindahl BD

New Phytol. 187 (4) 1124-1134 [2010-09-00; online 2010-06-22]

*Here, species composition and biomass production of actively growing ectomycorrhizal (EM) mycelia were studied over the rotation period of managed Norway spruce (Picea abies) stands in south-western Sweden. *The EM mycelia were collected using ingrowth mesh bags incubated in the forest soil during one growing season. Fungal biomass was estimated by ergosterol analysis and the EM species were identified by 454 sequencing of internal transcribed spacer (ITS) amplicons. Nutrient availability and the fungal biomass in soil samples were also estimated. *Biomass production peaked in young stands (10-30 yr old) before the first thinning phase. Tylospora fibrillosa dominated the EM community, especially in these young stands, where it constituted 80% of the EM amplicons derived from the mesh bags. Species richness increased in older stands. *The establishment of EM mycelial networks in young Norway spruce stands requires large amounts of carbon, while much less is needed to sustain the EM community in older stands. The variation in EM biomass production over the rotation period has implications for carbon sequestration rates in forest soils.

NGI Stockholm (Genomics Applications)

NGI Stockholm (Genomics Production)

National Genomics Infrastructure

PubMed 20561206

DOI 10.1111/j.1469-8137.2010.03324.x

Crossref 10.1111/j.1469-8137.2010.03324.x

pii: NPH3324


Publications 9.5.0