An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition.

Wessels B, Seyfferth C, Escamez S, Vain T, Antos K, Vahala J, Delhomme N, Kangasjärvi J, Eder M, Felten J, Tuominen H

New Phytol. 224 (4) 1585-1599 [2019-12-00; online 2019-07-02]

Differentiation of xylem elements involves cell expansion, secondary cell wall (SCW) deposition and programmed cell death. Transitions between these phases require strict spatiotemporal control. The function of Populus ERF139 (Potri.013G101100) in xylem differentiation was characterized in transgenic overexpression and dominant repressor lines of ERF139 in hybrid aspen (Populus tremula × tremuloides). Xylem properties, SCW chemistry and downstream targets were analyzed in both types of transgenic trees using microscopy techniques, Fourier transform-infrared spectroscopy, pyrolysis-GC/MS, wet chemistry methods and RNA sequencing. Opposite phenotypes were observed in the secondary xylem vessel sizes and SCW chemistry in the two different types of transgenic trees, supporting the function of ERF139 in suppressing the radial expansion of vessel elements and stimulating accumulation of guaiacyl-type lignin and possibly also xylan. Comparative transcriptomics identified genes related to SCW biosynthesis (LAC5, LBD15, MYB86) and salt and drought stress-responsive genes (ANAC002, ABA1) as potential direct targets of ERF139. The phenotypes of the transgenic trees and the stem expression profiles of ERF139 potential target genes support the role of ERF139 as a transcriptional regulator of xylem cell expansion and SCW formation, possibly in response to osmotic changes of the cells.

Integrated Microscopy Technologies Umeå [Service]

NGI Stockholm (Genomics Applications) [Service]

NGI Stockholm (Genomics Production) [Service]

National Genomics Infrastructure [Service]

PubMed 31125440

DOI 10.1111/nph.15960

Crossref 10.1111/nph.15960

Publications 9.5.0