CO2 Mineralization by MgO Nanocubes in Nanometric Water Films.

Luong NT, Veyret N, Boily JF

ACS Appl Mater Interfaces 15 (38) 45055-45063 [2023-09-27; online 2023-09-14]

Water films formed by the adhesion and condensation of air moisture on minerals can trigger the formation of secondary minerals of great importance to nature and technology. Magnesium carbonate growth on Mg-bearing minerals is not only of great interest for CO2 capture under enhanced weathering scenarios but is also a prime system for advancing key ideas on mineral formation under nanoconfinement. To help advance ideas on water film-mediated CO2 capture, we tracked the growth of amorphous magnesium carbonate (AMC) on MgO nanocubes exposed to moist CO2 gas. AMC was identified by its characteristic vibrational spectral signature and by its lack of long-range structure by X-ray diffraction. We find that AMC (MgCO3·2.3-2.5H2O) grew in sub-monolayer (ML) to 4 ML thick water films, with formation rates and yields scaling with humidity. AMC growth was however slowed down as AMC nanocoatings blocked water films access to the reactive MgO core. Films could however be partially dissolved by exposure to thicker water films, driving AMC growth for several more hours until nanocoatings blocked the reactions again. These findings shed new light on a potentially important bottleneck for the efficient mineralization of CO2 using MgO-bearing products. Notably, this study shows how variations in the air humidity affect CO2 capture by controlling water film coverages on reactive minerals. This process is also of great interest in the study of mineral growth in nanometrically thick water films.

Integrated Microscopy Technologies Umeå [Service]

PubMed 37707796

DOI 10.1021/acsami.3c10590

Crossref 10.1021/acsami.3c10590

pmc: PMC10540135


Publications 9.5.0