Early unrecognised SARS-CoV-2 introductions shaped the first pandemic wave, Sweden, 2020.

Dyrdak R, Hodcroft EB, Broddesson S, Grabbe M, Franklin H, Gisslén M, Holm ME, Lindh M, Nederby-Öhd J, Ringlander J, Sundqvist M, Neher RA, Albert J

Euro Surveill. 29 (41) - [2024-10-00; online 2024-10-11]

BackgroundDespite the unprecedented measures implemented globally in early 2020 to prevent the spread of SARS-CoV-2, Sweden, as many other countries, experienced a severe first wave during the COVID-19 pandemic.AimWe investigated the introduction and spread of SARS-CoV-2 into Sweden.MethodsWe analysed stored respiratory specimens (n = 1,979), sampled 7 February-2 April 2020, by PCR for SARS-CoV-2 and sequenced PCR-positive specimens. Sequences generated from newly detected cases and stored positive specimens February-June 2020 (n = 954) were combined with sequences (Sweden: n = 730; other countries: n = 129,913) retrieved from other sources for Nextstrain clade assignment and phylogenetic analyses.ResultsTwelve previously unrecognised SARS-CoV-2 cases were identified: the earliest was sampled on 3 March, 1 week before recognised community transmission. We showed an early influx of clades 20A and 20B from Italy (201/328, 61% of cases exposed abroad) and clades 19A and 20C from Austria (61/328, 19%). Clade 20C dominated the first wave (20C: 908/1,684, 54%; 20B: 438/1,684, 26%; 20A: 263/1,684, 16%), and 800 of 1,684 (48%) Swedish sequences formed a country-specific 20C cluster defined by a spike mutation (G24368T). At the regional level, the proportion of clade 20C sequences correlated with an earlier weighted mean date of COVID-19 deaths.ConclusionCommunity transmission in Sweden started when mitigation efforts still focused on preventing influx. This created a transmission advantage for clade 20C, likely introduced from ongoing cryptic spread in Austria. Therefore, pandemic preparedness should have a comprehensive approach, including capacity for large-scale diagnostics to allow early detection of travel-related cases and community transmission.

Clinical Genomics Stockholm [Service]

Clinical Genomics Örebro [Collaborative]

PubMed 39392000

DOI 10.2807/1560-7917.ES.2024.29.41.2400021

Crossref 10.2807/1560-7917.ES.2024.29.41.2400021

pmc: PMC11484920


Publications 9.5.1