Carbon flux around leaf-cytosolic glyceraldehyde-3-phosphate dehydrogenase introduces a 13C signal in plant glucose.

Wieloch T, Werner RA, Schleucher J

J. Exp. Bot. 72 (20) 7136-7144 [2021-10-26; online 2021-07-06]

Within the plant and Earth sciences, stable isotope analysis is a versatile tool conveying information (inter alia) about plant physiological and paleoclimate variability across scales. Here, we identify a 13C signal (i.e. systematic 13C/12C variation) at tree-ring glucose C-4 and report an experimentally testable theory on its origin. We propose the signal is introduced by glyceraldehyde-3-phosphate dehydrogenases in the cytosol of leaves. It conveys two kinds of (potentially convoluted) information: (i) commitment of glyceraldehyde 3-phosphate to 3-phosphoglycerate versus fructose 1,6-bisphosphate metabolism; and (ii) the contribution of non-phosphorylating versus phosphorylating glyceraldehyde-3-phosphate dehydrogenase to catalysing the glyceraldehyde 3-phosphate to 3-phosphoglycerate forward reaction of glycolysis. The theory is supported by 13C fractionation modelling. Modelling results provide the first evidence in support of the cytosolic oxidation-reduction (COR) cycle, a carbon-neutral mechanism supplying NADPH at the expense of ATP and NADH, which may help to maintain leaf-cytosolic redox balances. In line with expectations related to COR cycling, we found a positive correlation between air vapour pressure deficit and 13C discrimination at glucose C-4. Overall, 13C-4 signal analysis may enable an improved understanding of leaf carbon and energy metabolism.

Swedish NMR Centre (SNC) [Collaborative]

PubMed 34223885

DOI 10.1093/jxb/erab316

Crossref 10.1093/jxb/erab316

pii: 6315293
pmc: PMC8547152


Publications 7.2.7